

Cost of soil degradation in England and Wales: an ecosystems approach EnvEcon 2016

Joe Morris

with

Anil Graves, Jane Rickson, Lynda Deeks, Mark Kibblewhite, Jim Harris, Tim Fairwell

Cranfield University

Acknowledgement: Defra

Overview

- Context
- Objectives
- Approach
- Results
- Implications for policy
- Source Reference
 - Graves, A.R., Morris, J., Deeks, L.K., Rickson, R.J., Kibblewhite, M.G., Harris, J.A, and Farewell, T.S. and I. Truckle. 2015. The Total Costs of Soil Degradation in England and Wales. Ecological Economics 119 399–413

Objectives: Answering questions

- What are the main soil degradation processes and their incidence in England and Wales?
- How does degradation affect soil (ecosystem) services
- What are the likely economic consequences?
- So what? and what to do?

Soil and soil degradation

- SOIL?
- soil erosion
- compaction
- organic loss
- diffuse contamination
- loss of biota
- soil sealing

Methods

- Assessment
- Data sources
- 'Soilscapes'
- Degradation probability
- Economic valuation
- Ecosystems framework

Soil Degradation: An Ecosystems Framework

Soilscapes: soils and land use in E&W

Area (% of total ha)					
Main Soil Types					
Clay	Silt	Sand	Peat		
59%	12%	20%	9%		

	Soilscapes					
	Ratio of "actual" to "expected" soilscape areas					
Land use	Clay	Silt	Sand	Peat		
Urban	102%	83%	144%	15%		
Horticulture	73%	249%	128%	21%		
Arable intensive	81%	189%	141%	22%		
Arable extensive	113%	110%	98%	12%		
Grassland improved	112%	110%	88%	38%		
Grassland unimproved	80%	65%	69%	334%		
Rough grassland	89%	88%	128%	129%		
Forestry	63%	63%	131%	312%		
Woodland	102%	115%	110%	48%		
Wildscape	39%	49%	70%	609%		

Probability of Soil Degradation in E&W*

Erosion

Compaction

Land use	Soilscapes			
	Clay	Silt	Sand	Peat
Urban	L	Н	Н	n/a
Horticulture	L	Н	Н	Н
Arable intensive	L	Н	Н	Н
Arable extensive	L	M	Н	Н
Grassland improved	L	M	М	Н
Grassland unimproved	L	M	M	Н
Rough grassland	L	M	M	Н
Forestry	L	L	L	M
Woodland	L	L	L	M
Wildscape	L	L	L	M

Land use	Soil types			
	Clay	Silt	Sand	Peat
Urban	Н	Н	Н	Н
Horticulture	Н	Н	M	Н
Arable intensive	Н	Н	M	Н
Arable extensive	Н	M	М	M
Grassland improved	Н	Н	L	Н
Grassland unimproved	M	M	M	M
Rough grassland	M	M	M	M
Forestry	Н	M	L	Н
Woodland	L	L	L	L
Wildscape	L	L	L	L

Photos: Richard Smith *Assessed probability of incidence: High, Medium, Low, ? unspecified

Cranfield Probability of soil degradation in England and Wales

Cranfield Economic valuation

- Stocks and flows
- On site: off site (market failure)
- Private/Public
- Damage costs
- Defensive/mitigation expenditure
- Market and Accounting prices
- Quantifiable Expected Annual Costs

Estimates of soil degradation Cranfield

England and Wales, £'000/year 2009 prices

	Provisioning	R	egulating	;		Cultural	Total 'central'	Total range
	agric prod	Flooding	Water quality	GHG	Other			
Erosion	30-50	50-80	25-40	5-10	U	U	150	110-180
Compaction	180-220	120-200	5-10	75-110	U	U	470	350-540
Organic content loss	U	U	U	360-700	U	U	570	360-700
Diffuse Contam.	U	U	U	U	20-30	U	25	20-30
Soil biota loss	U	U	U	U	U	U	U	U
Sealing	U	U	U	U	U	U	U	U
Total central	244	238	37	671	25	U (1,215	
Total								
range	210-270	170-280	30-50	440-820	20-30	U		870-1,450
		_						

U: Estimates not available for national scale

Distribution of estimated $£_{2009}$ 1.2 bn quantified economic costs of soil degradation in E&W

Cranfield Distribution by soil type

Peat 3%

Clay

72%

Total Cost: £1.2 bn /year

Erosion

Total: £150M On site: 27%

Off site: 73%

9%

Silt

Sand

16%

Compaction

Total: £470 M On site: 43% Off site: 57%

Organic loss

Total: £570M On site: 1% Off site: 99%

Distribution by land cover

Total Cost: £1.2 bn /year

Issues and challenges

- Key challenges: biophysical relations, valuation, dynamics
- Soilscapes and ecosystems: implications for science
- 'Units' of soil service
- Stocks, flows and thresholds
- Spatial, scale and temporal variation
- Joint /overlapping effects
- Efficacy of measures/levers

Policy Implications

Rural space:

- avoid erosion and compaction on intensively farmed soils
- maintain soil organic content
- protecting soil carbon embraces most aspects of soil quality
- Urban context : reduced sealing for flood control
- Large Off Site/External Costs indicate failure of soil governance and justification for policy interventions
- Soils and Policy Domains

